485 research outputs found

    New general dependence measures: construction, estimation and application to high-frequency stock returns

    Full text link
    We propose a set of dependence measures that are non-linear, local, invariant to a wide range of transformations on the marginals, can show tail and risk asymmetries, are always well-defined, are easy to estimate and can be used on any dataset. We propose a nonparametric estimator and prove its consistency and asymptotic normality. Thereby we significantly improve on existing (extreme) dependence measures used in asset pricing and statistics. To show practical utility, we use these measures on high-frequency stock return data around market distress events such as the 2010 Flash Crash and during the GFC. Contrary to ubiquitously used correlations we find that our measures clearly show tail asymmetry, non-linearity, lack of diversification and endogenous buildup of risks present during these distress events. Additionally, our measures anticipate large (joint) losses during the Flash Crash while also anticipating the bounce back and flagging the subsequent market fragility. Our findings have implications for risk management, portfolio construction and hedging at any frequency

    Decentralized Matrix Factorization with Heterogeneous Differential Privacy

    Full text link
    Conventional matrix factorization relies on centralized collection of users' data for recommendation, which might introduce an increased risk of privacy leakage especially when the recommender is untrusted. Existing differentially private matrix factorization methods either assume the recommender is trusted, or can only provide a uniform level of privacy protection for all users and items with untrusted recommender. In this paper, we propose a novel Heterogeneous Differentially Private Matrix Factorization algorithm (denoted as HDPMF) for untrusted recommender. To the best of our knowledge, we are the first to achieve heterogeneous differential privacy for decentralized matrix factorization in untrusted recommender scenario. Specifically, our framework uses modified stretching mechanism with an innovative rescaling scheme to achieve better trade off between privacy and accuracy. Meanwhile, by allocating privacy budget properly, we can capture homogeneous privacy preference within a user/item but heterogeneous privacy preference across different users/items. Theoretical analysis confirms that HDPMF renders rigorous privacy guarantee, and exhaustive experiments demonstrate its superiority especially in strong privacy guarantee, high dimension model and sparse dataset scenario.Comment: Accepted by the 22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom-2023
    corecore